
MUIRexx

MUIRexx ii

COLLABORATORS

TITLE :

MUIRexx

ACTION NAME DATE SIGNATURE

WRITTEN BY August 23, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

MUIRexx iii

Contents

1 MUIRexx 1

1.1 MUIRexx.guide . 1

1.2 MUIRexx.guide/Update Information . 2

1.3 MUIRexx.guide/Introduction . 3

1.4 MUIRexx.guide/Disclaimer . 3

1.5 MUIRexx.guide/Conditions . 4

1.6 MUIRexx.guide/Requirements . 4

1.7 MUIRexx.guide/Installation . 5

1.8 MUIRexx.guide/Command Reference . 6

1.9 MUIRexx.guide/Standard Commands . 7

1.10 MUIRexx.guide/quit . 7

1.11 MUIRexx.guide/hide . 8

1.12 MUIRexx.guide/show . 8

1.13 MUIRexx.guide/info . 8

1.14 MUIRexx.guide/help . 8

1.15 MUIRexx.guide/Windows . 9

1.16 MUIRexx.guide/window . 9

1.17 MUIRexx.guide/endwindow . 11

1.18 MUIRexx.guide/Groups . 11

1.19 MUIRexx.guide/group . 11

1.20 MUIRexx.guide/endgroup . 14

1.21 MUIRexx.guide/Menus . 14

1.22 MUIRexx.guide/menu . 14

1.23 MUIRexx.guide/endmenu . 15

1.24 MUIRexx.guide/item . 15

1.25 MUIRexx.guide/Objects . 17

1.26 MUIRexx.guide/space . 18

1.27 MUIRexx.guide/label . 19

1.28 MUIRexx.guide/view . 19

1.29 MUIRexx.guide/gauge . 20

MUIRexx iv

1.30 MUIRexx.guide/meter . 21

1.31 MUIRexx.guide/text . 23

1.32 MUIRexx.guide/button . 26

1.33 MUIRexx.guide/image . 26

1.34 MUIRexx.guide/switch . 26

1.35 MUIRexx.guide/check . 27

1.36 MUIRexx.guide/cycle . 29

1.37 MUIRexx.guide/radio . 31

1.38 MUIRexx.guide/string . 32

1.39 MUIRexx.guide/popasl . 34

1.40 MUIRexx.guide/slider . 34

1.41 MUIRexx.guide/popslider . 37

1.42 MUIRexx.guide/knob . 37

1.43 MUIRexx.guide/list . 37

1.44 MUIRexx.guide/dirlist . 40

1.45 MUIRexx.guide/volumelist . 43

1.46 MUIRexx.guide/object . 46

1.47 MUIRexx.guide/Misc . 48

1.48 MUIRexx.guide/request . 49

1.49 MUIRexx.guide/method . 50

1.50 MUIRexx.guide/setvar . 50

1.51 MUIRexx.guide/getvar . 51

1.52 MUIRexx.guide/application . 51

1.53 MUIRexx.guide/Example Macro . 52

1.54 MUIRexx.guide/MUI Format Sequences . 53

1.55 MUIRexx.guide/MUI Image Specifications . 54

1.56 MUIRexx.guide/MUI List Format . 55

1.57 MUIRexx.guide/MagicUserInterface . 56

1.58 MUIRexx.guide/Acknowledgements . 57

1.59 MUIRexx.guide/History . 57

1.60 MUIRexx.guide/Concept Index . 58

1.61 MUIRexx.guide/Command Index . 61

MUIRexx 1 / 63

Chapter 1

MUIRexx

1.1 MUIRexx.guide

MUIRexx

This is Edition 2.0 of the MUIRexx documentation,
24 March 1996, for MUIRexx Version 2.0.

Author: Russ Leighton <russ@sneezy.lancaster.ca.us>

Update Information
Read this first.

Introduction
A brief encounter.

Installation
Pretty simple actually.

Command Reference
The mysteries revealed.

Example Macro
Just to peak your interest.

MUI Format Sequences
Making fancy text strings.

MUI Image Specifications
How to get little MUI images.

MUI List Format
How to get your directory lists just right.

MUIRexx 2 / 63

MagicUserInterface
The heart of MUIRexx.

Acknowledgements
Could not have done it without you.

History
What has been done so far.

Concept Index
Look it up here.

Command Index
Where is that command anyway?

1.2 MUIRexx.guide/Update Information

Update Information

This version of ‘MUIRexx’ is a major update from the previous
version. I decided to designate this release a major update since a lot
has changed (see

History
) and most likely any scripts written for

previous versions will break under this version. I apologize for any
inconvenience this causes, but it was necessary to make major changes
to implement some new capabilities. One of the biggest changes is that
most options now require a keyword, so if you find that gadgets are
missing (or even whole groups) then it is probably because a keyword is
missing (like the LABEL keyword for example). Please have a look at
the included example scripts to get an idea of how things should now
look. Also, AmigaDOS 3.0 or better is now required because of the need
for datatypes.library.

Some other major changes and additions include:

* Multiple labels specified in a comma delimited list (used to be
specified as multiple arguments separated by space)

* Attribute TAGS can be set and retrieved, greatly improving
flexibility and eliminating the need for some options (which have
been removed, e.g. WEIGHT)

* New ‘object’ command for creation of generalized objects based on
MUI internal and external classes as well as BOOPSI classes (also
eliminated the need for some built-in objects, like ‘scale’)

* New ‘method’ command to allow creation of class methods which
greatly enhances flexibility and eliminates need for some commands
(which have been removed, e.g. ‘muiset’, ‘config’)

MUIRexx 3 / 63

* Drag and drop operations are fully support for some objects

* Internal variables may be set or retrieved for passing data
conveniently between ‘ARexx’ scripts

Note that if a script does fail then most likely the application
will still be running (even if no window is open). In this case just
issue the

quit
command to the application port.

1.3 MUIRexx.guide/Introduction

Introduction

‘MUIRexx’ is a program which serves as an interface between ‘ARexx’
(Copyright (C) 1987, William S. Hawes) and

MagicUserInterface
(Copyright (C) 1993-95, Stefan Stuntz). ‘MUIRexx’ does not provide

complete access to all of the capabilities of MagicUserInterface (MUI),
however, quite a lot of capability is implemented in ‘MUIRexx’ such as
notification, icon buttons, application objects (objects that react to
icons dropped on them), and drag/drop objects, as well as many standard
MUI objects. Complete graphical user interfaces as well as full
applications can be developed using ‘MUIRexx’ and ‘ARexx’ macros.
Additionally, it is also possible to dynamically change or add objects
after the application has been created.

Since MUI is an object oriented extension it was felt that the
general flavor of object oriented programming (OOP) should be retained
in the ‘ARexx’ implementation. Therefore, the command structure has a
familiar OOP look to it which is somewhat of a departure from normal
‘ARexx’ programming construction.

Disclaimer
A not so standard disclaimer.

Conditions
Not too bad really.

Requirements
At the very least you need this.

1.4 MUIRexx.guide/Disclaimer

MUIRexx 4 / 63

Disclaimer
==========

Basically, I am not in any way responsible if anything bad happens
to you because of using this software. Say, for example, a mad MUI
hater breaks into your house and smashes up your computer because you
are using ‘MUIRexx’ then I am not responsible ;-)

Anyway, I hate disclaimers because the implication is that our
society has become so pitiful that we feel we have to protect ourselves
with legal disclaimers even though we, as freeware contributors, are
providing a service for no charge. Therefore, I implore, if you are a
person who is inclined to use/abuse the legal system in anyway that
would cause harm to someone who is only trying to contribute to the
community then please do not use this software.

1.5 MUIRexx.guide/Conditions

Conditions
==========

Actually, there aren’t any concerning usage. I do not require
anything from you to use this software, but I wouldn’t turn down
anything either (well, maybe dirty underwear). I have put quite a lot
of effort into this so I would appreciate some feedback. If you
discover any bugs tell me about them. If you have any ideas let me
know. If you write any interesting applications send them my way. I
can be reached by way of the following email address.

Russ Leighton <russ@sneezy.lancaster.ca.us>

Also, it should be understood that I retain the copyright to the
software ‘MUIRexx’ and as such do not give permission to anyone to sell
or claim this software as their own. I do not, however, make any such
claim to the scripts provided or to any scripts written that make use of
‘MUIRexx’. The full distribution may be freely distributed, provided
that the original distribution remains intact. Also, no fee may be
charged for the software except for any nominal media and/or shipping
charge. Additionally, this software (including all distribution
contents) may not be included on any commercial disks (including disk
magazines and cover disks) without the author’s expressed permission.
Exceptions to this rule includes any disks/CDROMs distributed by Cronus
(Fred Fish) or Aminet. A limited distribution of ‘MUIRexx’ (binary and
readme file only) may be distributed with software, with prior consent,
provided that I am given due credit and that the software package be
provided to me at no cost.

1.6 MUIRexx.guide/Requirements

MUIRexx 5 / 63

Requirements
============

The minimum system requirements needed to use ‘MUIRexx’ are as
follows.

* An Amiga! (any should do)

* Version 3.0 of the Amiga operating system or higher

* MUI 3.0 or better (see
MagicUserInterface
)

* ARexx (running of course)

Additionally, to run the included macros the following may be needed.

* rexxsupport.library (needed by all the scripts)

* some default icons and tools (take a look at the ‘deficon.rexx’
script)

The following are nice-to-have but not absolutely necessary.

* A graphics card for high resolution and lots of colors

* NewIcons ((C) Nicola Salmoria) for 256 color icons (great for
thumbnail previews of images)

* PictIcon ((C) Chad Randall) to generate those 256 color icons

1.7 MUIRexx.guide/Installation

Installation

Just copy the contents of the archive to any desired location and
assign MUIREXX: to that directory (needed by the included macros).

‘MUIRexx’ may be started either from a CLI or from the WorkBench.
The command line syntax for ‘MUIRexx’ is:

-> [run] MUIRexx <script> PORT <portname> HELP <guidename>

If <SCRIPT> is specified then the corresponding ‘ARexx’ script will be
executed, otherwise, the code will wait until it receives a command,
presumably from a subsequently executed ‘ARexx’ command or script. The
PORT option will set the ‘MUIRexx’ host address to <PORTNAME>. If not
given then the host address will be MUIREXX. The HELP option specifies
an AmigaGuide® file to be used for online help (see the NODE argument
descriptions for selected gadgets).

MUIRexx 6 / 63

To use ‘MUIRexx’ from the WorkBench a project icon must be supplied
with the application startup script. The icon name should be the
startup script name with the file extension .INFO replacing .REXX.
Alternativily, a tooltype SCRIPT may be set to the name of the script
to be executed on startup. The full path should be specified if the
icon is not located in the same directory as the script. The default
tool for the icon should be set to ‘MUIRexx’ (with the full path
included if ‘MUIRexx’ is not in the global path). A tooltype PORT may
be specified to set the host address name for the application. If this
tooltype is not specified then the name will be set to the icon name
(minus the .INFO extension). Also, a tooltype HELP may be included to
specify the AmigaGuide® file as above. It is also recommended that the
value for the stack size be set at a reasonable level (whatever that
is). If problems occur running a script try setting the stack higher.

1.8 MUIRexx.guide/Command Reference

Command Reference

This chapter is included as a reference to the commands available
for use in ‘ARexx’ macros.

Each command template is given in the standard DOS ReadArg form.
That is each argument name is given separated by commas with flags
specified (separated by a /). Within an ‘ARexx’ script command
arguments should be separated by space (not commas). The flag
definitions are as follows:

Flag Definition

/K Keyword required.
/A Argument required.
/F Final argument. The remainder of the line will be set to

this argument.
/M Multiple arguments (separated by space).
/S Switch argument.

Note that some string arguments shown in the examples are surrounded
by two sets of quotes (consisting of a pair of single quotes and a pair
of double quotes). The general rule of thumb is if the argument is the
final argument (indicated by a /F in the command template) then only a
single pair of quotes is necessary. Otherwise, if the string contains
spaces then the two sets of quotes are necessary. The reason for this
is that ‘ARexx’ tries to interpret every token it encounters. If the
token is surrounded by quotes then the token is interpreted by removing
the quotes and leaving the enclosed string intact. Likewise, the DOS
ReadArgs function (used by ‘MUI’ to parse incoming ‘ARexx’ command
lines) parses arguments separated by spaces, therefore, strings with
spaces must by enclosed by quotes (hence, the need for the two sets of
quotes). An exception is if the argument is designated as the final
argument in which case the ReadArgs function will set the remainder of
the command line as the final argument.

MUIRexx 7 / 63

Standard Commands
Provided with all MUI apps

Windows
The parent of all

Groups
The layout

Menus
What is on the menu today?

Objects
The children

Misc
Those commands that don’t fit above

1.9 MUIRexx.guide/Standard Commands

Standard Commands
=================

These commands are standard with all MUI applications.

quit

hide

show

info

help

1.10 MUIRexx.guide/quit

-- Command: quit FORCE/S
This command will end the ‘MUIRexx’ application, closing windows
and freeing all associated memory. Note that if a script fails
‘MUIRexx’ may still actually be running. Use this command to end
the process by using an inline ‘ARexx’ command (e.g. issue ‘rx
"address [portname] quit"’ from a shell).

MUIRexx 8 / 63

1.11 MUIRexx.guide/hide

-- Command: hide
Hides (iconifies) the application.

1.12 MUIRexx.guide/show

-- Command: show
Shows (pops up) an iconified application.

1.13 MUIRexx.guide/info

-- Command: info ITEM/A
According to the given parameter the result string is filled with
the following contents (or something reasonably close):

* "title" - Name of the ARexx port

* "author" - "Russell Leighton"

* "copyright" - "Copyright ©1995-1996, Russell Leighton"

* "description" - "MUI Rexx interface."

* "version" - "$VER: MUIRexx 2.0 (3.24.96)"

* "base" - Name of the ARexx port

* "screen" - Name of the public screen

1.14 MUIRexx.guide/help

-- Command: help FILE/A
A list of all ‘ARexx’ commands available for the application is
written into the given file. In addition to the default commands
an MUI application can (and of course should) support many
application specific commands. The help list will contain these
commands as well.

MUIRexx 9 / 63

1.15 MUIRexx.guide/Windows

Windows
=======

These commands are used for window creation and disposal. At least
one window is required.

window
Begin window definition

endwindow
End window definition

1.16 MUIRexx.guide/window

-- Command: window ID/K, COMMAND/K, PORT/K, TITLE/K, CLOSE/S, ATTRS/K/M
This command begins the definition of a window. All group and
initial object definitions must be placed between a ‘window’ and
‘endwindow’ pair. The arguments are optional.

* ID [I..] - an id can be assigned to a window for later
reference. The id can be any combination of up to 5
characters.

* COMMAND [I..] - if given, a close gadget will be attached to
the window. If the null string is specified then the window
will simply be disposed when the close gadget is selected,
otherwise, the command string given will be executed. The
command will be issued to the host port specified by the PORT
argument. The command text may contain a format specifier
(‘%s’) in which case before issuing the command the format
specifier will be replaced by the window title (see the TITLE
argument description). Also, note that it is up to the
programmer to insure that the window is in fact closed,
presumably by the macro that is specified in this argument.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the close gadget is selected. If the port is
defined as COMMAND then the command will be issued to a DOS
shell (global path will be in affect only if ‘MUIRexx’ was
run from a shell). If this argument is not given but a
command is defined then the port will be defined as the port
for ‘ARexx’ (i.e. it will be assumed that the command is an
‘ARexx’ script). Note that the port may be defined as the
port of the application itself. This, in fact, would be a
way to dispose of the window or even the application itself.

* TITLE [I..] - the window may be given a title which will be

MUIRexx 10 / 63

displayed in the windows title bar.

* CLOSE [.S.] - if this switch is given and an id specified (see
ID argument) for an existing window then the window will be
closed.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with the window command are:

TAG_Name = TAG_id Flags Type

Window_Activate = 0x80428d2f /* V4 isg BOOL */
Window_AltHeight = 0x8042cce3 /* V4 i.g LONG */
Window_AltLeftEdge = 0x80422d65 /* V4 i.g LONG */
Window_AltTopEdge = 0x8042e99b /* V4 i.g LONG */
Window_AltWidth = 0x804260f4 /* V4 i.g LONG */
Window_AppWindow = 0x804280cf /* V5 i.. BOOL */
Window_Backdrop = 0x8042c0bb /* V4 i.. BOOL */
Window_Borderless = 0x80429b79 /* V4 i.. BOOL */
Window_DepthGadget = 0x80421923 /* V4 i.. BOOL */
Window_DragBar = 0x8042045d /* V4 i.. BOOL */
Window_Height = 0x80425846 /* V4 i.g LONG */
Window_IsSubWindow = 0x8042b5aa /* V4 isg BOOL */
Window_LeftEdge = 0x80426c65 /* V4 i.g LONG */
Window_NoMenus = 0x80429df5 /* V4 is. BOOL */
Window_Open = 0x80428aa0 /* V4 .sg BOOL */
Window_PublicScreen = 0x804278e4 /* V6 isg STRPTR */
Window_ScreenTitle = 0x804234b0 /* V5 isg STRPTR */
Window_SizeGadget = 0x8042e33d /* V4 i.. BOOL */
Window_SizeRight = 0x80424780 /* V4 i.. BOOL */
Window_Sleep = 0x8042e7db /* V4 .sg BOOL */
Window_TopEdge = 0x80427c66 /* V4 i.g LONG */
Window_UseBottomBorderScroller = 0x80424e79 /* V13 is. BOOL */
Window_UseLeftBorderScroller = 0x8042433e /* V13 is. BOOL */
Window_UseRightBorderScroller = 0x8042c05e /* V13 is. BOOL */
Window_Width = 0x8042dcae /* V4 i.g LONG */

MUIRexx 11 / 63

InnerBottom = 0x8042f2c0 /* V4 i.g LONG */
InnerLeft = 0x804228f8 /* V4 i.g LONG */
InnerRight = 0x804297ff /* V4 i.g LONG */
InnerTop = 0x80421eb6 /* V4 i.g LONG */

Example use of this command:

window ID DOCK ATTRS InnerBottom 0 InnerLeft 0 InnerRight 0 InnerTop 0
.
.
.

endwindow

window ID DOCK ATTRS Window_Open
say result

1.17 MUIRexx.guide/endwindow

-- Command: endwindow
This command ends the definition of a window. All group and initial
object definitions must be placed between a ‘window’ and
‘endwindow’ pair. The defined window will be opened after issuing
this command.

1.18 MUIRexx.guide/Groups

Groups
======

The following commands are used for group creation. Some arguments
can be used after the groups window is opened to change or retrieve
settings. In the argument descriptions the keywords are followed by a
pair of [] containing indicator letters. If the letter I is indicated
then the argument is valid during creation. If the letter S is
indicated then the argument can be set after the groups window is open.
If the letter G is indicated then the argument can be retrieved.

group

endgroup

1.19 MUIRexx.guide/group

MUIRexx 12 / 63

-- Command: group ID/K, COMMAND/K, PORT/K, FRAME/S, HORIZ/S,
REGISTER/S, LABEL=LABELS/K, ATTRS/K/M

This command begins the definition of a group. Groups are defined
by placement of other groups and objects between a ‘group’ and
‘endgroup’ pair. The arguments are optional.

* ID [I..] - an id can be assigned to a group for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the group has been previously created then the group will
be placed into a temporary state where objects can be added
or existing objects changed. The ‘endgroup’ command will
terminate this temporary state and cause the affected window
to be updated. Note that only gadgets can be added or
changed, not groups. In this manner a window’s contents may
be dynamically altered. In particular, object settings that
can only be specified when they are initially created (those
arguments indicated with a I) can be changed utilizing this
feature.

* COMMAND [I..] - if given, then the command will be issued to
the port (specified by the PORT option) if an object is
dropped on the group either by drag&drop or from the
Workbench. The command text may contain a format specifier
(‘%s’) in which case before issuing the command the format
specifier will be replaced by the object name (as specified
by the LABEL of the dropped object or the fully qualified
file name of the icon if dropped from the Workbench).

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever an object is dropped on the group. If the port is
defined as COMMAND then the command will be issued to a DOS
shell (global path will be in affect only if ‘MUIRexx’ was
run from a shell). If this argument is not given but a
command is defined then the port will be defined as the port
for ‘ARexx’ (i.e. it will be assumed that the command is an
‘ARexx’ script). Note that the port may be defined as the
port of the application itself.

* FRAME [I..] - if this switch is given then a frame will be
rendered for the group.

* HORIZ [I..] - if this switch is given then the group will be
arranged horizontally. If not specified then the group will
be arranged vertically.

* REGISTER [I..] - if this switch is given then the group will
be defined as a register group (i.e. a group consisting of
pages of objects or groups). The LABELS argument must be
given if this switch is specified.

* LABEL=LABELS [ISG] - either a group title or register labels
are specified with this option. Multiple labels are
separated by commas. If the REGISTER switch was given then
the labels correspond to the page titles. For each label

MUIRexx 13 / 63

specified there must be a corresponding group or object
defined. If the REGISTER switch was not given then the first
label will be rendered as a group title. For register
groups, if the group was previously created (and its window
is open) then the current page may be set by issuing the
group command, with an existing ID, and a label corresponding
to the page to be activated. Also, if an ID and the REGISTER
switch are given without a label then the currently displayed
page label will be returned in the ‘ARexx’ variable RESULT
(if ‘options results’ was specified in the ‘ARexx’ script).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with the group command are:

TAG_Name = TAG_id Flags Type

Group_ActivePage = 0x80424199 /* V5 isg LONG */
Group_Columns = 0x8042f416 /* V4 is. LONG */
Group_Horiz = 0x8042536b /* V4 i.. BOOL */
Group_HorizSpacing = 0x8042c651 /* V4 isg LONG */
Group_PageMode = 0x80421a5f /* V5 i.. BOOL */
Group_Rows = 0x8042b68f /* V4 is. LONG */
Group_SameHeight = 0x8042037e /* V4 i.. BOOL */
Group_SameSize = 0x80420860 /* V4 i.. BOOL */
Group_SameWidth = 0x8042b3ec /* V4 i.. BOOL */
Group_Spacing = 0x8042866d /* V4 is. LONG */
Group_VertSpacing = 0x8042e1bf /* V4 isg LONG */

Example use of this command:

window ID MDIR
group ID REG REGISTER LABELS ’Directory,Buffers,Volumes,Mirror’
.
.
.

endwindow

MUIRexx 14 / 63

group ID REG REGISTER
say result

1.20 MUIRexx.guide/endgroup

-- Command: endgroup
This command ends the definition of a group. Groups are defined by
placement of other groups and objects between a ‘group’ and
‘endgroup’ pair.

1.21 MUIRexx.guide/Menus

Menus
=====

The following commands are used for menu creation. These commands
are only valid within a window definition (i.e. between a ‘window’ and
‘endwindow’ pair).

menu

endmenu

item

1.22 MUIRexx.guide/menu

-- Command: menu ID/K, LABEL/K, ATTRS/K/M
This command begins the definition of a menu. Menus are defined by
placement of other menus and menu items between a ‘menu’ and
‘endmenu’ pair.

* ID [I..] - an id can be assigned to a menu for later
reference. The id can be any combination of up to 5
characters.

* LABEL [I..] - the menu must be given a label which will be
displayed in the menu bar of the window.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is

MUIRexx 15 / 63

recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with the menu command are:

TAG_Name = TAG_id Flags Type

Menu_Enabled = 0x8042ed48 /* V8 isg BOOL */

1.23 MUIRexx.guide/endmenu

-- Command: endmenu
This command ends the definition of a menu. Menus are defined by
placement of other menus and menu items between a ‘menu’ and
‘endmenu’ pair.

1.24 MUIRexx.guide/item

-- Command: item ID/K, COMMAND/K, PORT/K, LABEL/K, ATTRS/K/M
This command defines a menu item. This command is only valid
between a ‘menu’ and ‘endmenu’ pair.

* ID [I..] - an id can be assigned to a menu item for later
reference. The id can be any combination of up to 5
characters.

* COMMAND [I..] - if given, the command will be executed
whenever the menu item is selected. The command will be
issued to the host port specified by the PORT argument. Note
that the command is run asyncronously (as a detached process)
and only inherits the global path if ‘MUIRexx’ is started
from a shell. The command text may contain a format specifier

MUIRexx 16 / 63

(‘%s’) in which case before issuing the command the format
specifier will be replaced by the string given for the menu
item (see the LABEL argument description).

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the menu item is selected. If the port is defined
as COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

* LABEL [I..] - this is the text for the menu item (which must
be given).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with the item command are:

TAG_Name = TAG_id Flags Type

Menuitem_Checked = 0x8042562a /* V8 isg BOOL */
Menuitem_Checkit = 0x80425ace /* V8 isg BOOL */
Menuitem_Enabled = 0x8042ae0f /* V8 isg BOOL */
Menuitem_Exclude = 0x80420bc6 /* V8 isg LONG */
Menuitem_Shortcut = 0x80422030 /* V8 isg STRPTR */
Menuitem_Title = 0x804218be /* V8 isg STRPTR */
Menuitem_Toggle = 0x80424d5c /* V8 isg BOOL */

Example use of this command:

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO

MUIRexx 17 / 63

menu LABEL ’"Project"’
.
.
.
item ATTRS Menuitem_Title ’-1’ /* item separator bar */
item COMMAND ’"quit"’ PORT DEMO LABEL ’Quit’

endmenu
.
.
.

endwindow

group ID REG REGISTER
say result

1.25 MUIRexx.guide/Objects

Objects
=======

The following commands are used to create and manipulate objects.
Some arguments can be used after the object’s window is opened to
change or retrieve settings. Also, issuing an object command with only
an ID argument will return a result in the ‘ARexx’ variable RESULT (if
‘options results’ was specified in the ‘ARexx’ script). In the
argument descriptions the keywords are followed by a pair of []
containing indicator letters. If the letter I is indicated then the
argument is valid during creation. If the letter S is indicated then
the argument can be set after the objects window is open. If the letter
G is indicated then the argument can be retrieved.

space

label

view

gauge

meter

text

button

image

switch

check

MUIRexx 18 / 63

cycle

radio

string

popasl

slider

popslider

knob

list

dirlist

volumelist

object

1.26 MUIRexx.guide/space

-- Command: space BAR/S, HORIZ/S, VALUE
This object will place some white space into the current location.
A consequence of placing space is that the window will be sizable
in the associated direction. The arguments are optional.

* BAR [I..] - if this switch is given then a bar will be
rendered in the center of the space.

* HORIZ [I..] - if this switch is given then the space will be a
horizontal space (best used within a horizontal group)
otherwise the space will be vertical.

* VALUE [I..] - this argument, if given, specifies the minimum
amount of space. The default value is zero.

Example use of this command:

window
.
.
.
group HORIZ

button LABEL ’OK’
space BAR 0
button LABEL ’Cancel’

endgroup
endwindow

MUIRexx 19 / 63

1.27 MUIRexx.guide/label

-- Command: label LEFT/S, CENTER/S, SINGLE/S, DOUBLE/S, LABEL/F/A
This object is a simple label that can be used in conjunction with
another object for clarification of the other objects purpose.

* LEFT [I..] - this switch will force the label to be left
justified.

* CENTER [I..] - this switch will force the label to be
centered.

* SINGLE [I..] - this switch will cause extra vertical space to
be added to the label to center it about the same space
occupied by an object with a single width frame.

* DOUBLE [I..] - this switch will cause extra vertical space to
be added to the label to center it about the same space
occupied by an object with a double width frame.

* LABEL [I..] - this is the text for the label (which must be
the last argument and may contain spaces).

Example use of this command:

window
.
.
.
group HORIZ

label ’"string:"’
string ID STR1

endgroup
endwindow

1.28 MUIRexx.guide/view

-- Command: view FILE/K, STRING/F
This specifies a view object.

* FILE [I..] - If this argument is given then the view contents
will be retrieved from the specified file.

* STRING [I..] - this is the view content string. Note that
the string may contain any of the special formatting
sequences (see

MUI Format Sequences
). Also, if this argument

is given then it must be the last specified.

Example use of this command:

MUIRexx 20 / 63

window ID LHA TITLE ’"Archive List"’
view FILE ’"ram:t/lha.out"’
.
.
.

endwindow

1.29 MUIRexx.guide/gauge

-- Command: gauge ID/K, HELP/K, NODE/K, LABEL/K, ATTRS/K/M
Gauge objects are created with this command.

* ID [I..] - an id can be assigned to a gauge for later
reference. The id can be any combination of up to 5
characters.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated gauge. Of course, this is dependant on
whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
gauge and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* LABEL [I..] - if given this label will be displayed in the
gauge. A format specifier ‘%ld’ may be included in the string
which will be replaced by the current gauge level.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’

MUIRexx 21 / 63

variable RESULT.

Some useful TAGs for use with the gauge command are:

TAG_Name = TAG_id Flags Type

Gauge_Current = 0x8042f0dd /* V4 isg LONG */
Gauge_Divide = 0x8042d8df /* V4 isg BOOL */
Gauge_Horiz = 0x804232dd /* V4 i.. BOOL */
Gauge_InfoText = 0x8042bf15 /* V7 isg STRPTR */
Gauge_Max = 0x8042bcdb /* V4 isg LONG */

Example use of this command:

window TITLE ’"Test"’ COMMAND ’"quit"’ PORT DEMO
.
.
.
group

slider ID SLDR
gauge ID GAUG LABEL ’"level %ld"’ ATTRS Gauge_Horiz TRUE
object CLASS ’"Scale.mui"’
.
.
.
group HORIZ

group
label DOUBLE ’"Hue:"’
label DOUBLE ’"Saturation:"’

endgroup
group

gauge ID HUE ATTRS Gauge_Max 16384,
Gauge_Divide 262144,
Gauge_Horiz TRUE

gauge ID SAT ATTRS Gauge_Max 16384,
Gauge_Divide 262144,
Gauge_Horiz TRUE

endgroup
endgroup

endgroup
endwindow

method ID SLDR Notify Numeric_Value EveryTime,
@GAUG 3 Set Gauge_Current TriggerValue

1.30 MUIRexx.guide/meter

-- Command: meter ID/K, HELP/K, NODE/K, LABEL/K, ATTRS/K/M
Meter objects are created with this command.

* ID [I..] - an id can be assigned to a meter for later
reference. The id can be any combination of up to 5
characters.

MUIRexx 22 / 63

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated meter. Of course, this is dependant on
whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
meter and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* LABEL [I..] - if given this label will be displayed in the
meter.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with the meter command are:

TAG_Name = TAG_id Flags Type

Numeric_Default = 0x804263e8 /* V11 isg LONG */
Numeric_Format = 0x804263e9 /* V11 isg STRPTR */
Numeric_Max = 0x8042d78a /* V11 isg LONG */
Numeric_Min = 0x8042e404 /* V11 isg LONG */
Numeric_Reverse = 0x8042f2a0 /* V11 isg BOOL */
Numeric_RevLeftRight = 0x804294a7 /* V11 isg BOOL */
Numeric_RevUpDown = 0x804252dd /* V11 isg BOOL */
Numeric_Value = 0x8042ae3a /* V11 isg LONG */

Example use of this command:

window TITLE ’"Test"’ COMMAND ’"quit"’ PORT DEMO
.
.
.

MUIRexx 23 / 63

group
group HORIZ

knob ID KNOB HELP ’"an example knob gadget"’ NODE ’"knob"’
meter ID METR NODE ’"meter"’ LABEL ’meter’

endgroup
endgroup

endwindow

method ID KNOB Notify Numeric_Value EveryTime,
@METR 3 Set Numeric_Value TriggerValue

1.31 MUIRexx.guide/text

-- Command: text ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PRESS/S ←↩
,

APP/S, DROP/S, ICON/K, PICT/K, TRANS/S, LABEL/K/F, ATTRS/K/M
Text gadget objects are created with this command. Text, button,
image and switch gadgets are essentially identical with the only
difference being the base object class to create each type of
object. All options are identical for these objects.

* ID [I..] - an id can be assigned to a gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the object has been previously created, then the label
will be returned in RESULT (if OPTIONS RESULTS is specified
in the script).

* COMMAND [IS.] - if given, the command will be executed
whenever the gadget is pressed (PRESS switch specified or
default for no switch), an icon is dropped (APP switch), or
another object is dropped (DROP switch) on the gadget. The
command will be issued to the host port specified by the PORT
argument. Note that the command is run asyncronously (as a
detached process) and only inherits the global path if
‘MUIRexx’ is started from a shell. The command text may
contain a format specifier (‘%s’) in which case before
issuing the command the format specifier will be replaced by
the gadget label (see the LABEL argument description), an
icon name (if an icon was dropped on the gadget), or another
objects label (if an object is dropped on the gadget).
Additionally, if the gadget is an icon (specified by the ICON
argument) and a command is not specified but a port is (see
PORT argument description) then the command will be set to
the default tool of the icon. For example, if the icons
default tool is ‘MultiView’ then the command string will be
set to ‘MultiView %s’. Note that commands may be defined
after the gadget has been created. In this way different
commands may be defined for each action.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the gadget is activated. If the port is defined as

MUIRexx 24 / 63

COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated gadget. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
gadget and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* PRESS [IS.] - if this flag is given then the specified
command (given in the COMMAND option) will will issued if the
object is pressed.

* APP [IS.] - if this flag is given then the specified command
(given in the COMMAND option) will will issued if an icon is
dropped on the object from the Workbench.

* DROP [IS.] - if this flag is given then the specified command
(given in the COMMAND option) will will issued if another
object is dropped on the object through a drag and drop
operation.

* ICON [I..] - the name of an icon may be specified with this
argument. If given then the gadget image will be set to the
icon image. Note that the name of the icon should not be
specified with a ".info".

* PICT [I..] - the name of a picture may be specified with this
argument. If given then the gadget image will be set to the
picture content. Any picture with an associated installed
datatype may be used.

* TRANS [I..] - if this flag is given then the background color
of the picture (defined with the PICT option) will be
transparent. Note that for pictures with a large number of
colors this option will result in a significantly increased
rendering time.

* LABEL [ISG] - the label for the gadget is given by this
argument. Note that the string may contain any of the
special formatting sequences (see

MUI Format Sequences
).

Additionally, even though the label is not displayed for icon

MUIRexx 25 / 63

gadgets it may still be used in the command string (see
COMMAND argument above).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Text_Contents = 0x8042f8dc /* V4 isg STRPTR */
Text_HiChar = 0x804218ff /* V4 i.. char */
Text_PreParse = 0x8042566d /* V4 isg STRPTR */
Text_SetMax = 0x80424d0a /* V4 i.. BOOL */
Text_SetMin = 0x80424e10 /* V4 i.. BOOL */
Text_SetVMax = 0x80420d8b /* V11 i.. BOOL */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
Draggable = 0x80420b6e /* V11 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
ShowSelState = 0x8042caac /* V4 i.. BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window ID MRX1 TITLE ’"demo"’ COMMAND ’"window ID MRX1 CLOSE"’ PORT DEMO

MUIRexx 26 / 63

text LABEL ’A demonstration of MUIRexx’
button ID BUT COMMAND ’"out %s"’ HELP ’"button 1"’ LABEL ’button 1’
image ICON ’"env:sys/def_picture"’ PORT ’"COMMAND"’
switch ID SWCH LABEL ’switch’
.
.
.

endwindow

switch ID SWCH ATTRS Selected
say result

1.32 MUIRexx.guide/button

-- Command: button ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PRESS ←↩
/S,

APP/S, DROP/S, ICON/K, PICT/K, TRANS/S, LABEL/K/F, ATTRS/K/M
Button gadget objects are created with this command. Text,
button, image and switch gadgets are essentially identical with
the only difference being the base object class to create each
type of object. All options are identical for these objects.
Refer to the

text
command for descriptions of the options.

1.33 MUIRexx.guide/image

-- Command: image ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PRESS/ ←↩
S,

APP/S, DROP/S, ICON/K, PICT/K, TRANS/S, LABEL/K/F, ATTRS/K/M
Image gadget objects are created with this command. Text, button,
image and switch gadgets are essentially identical with the only
difference being the base object class to create each type of
object. All options are identical for these objects. Refer to
the

text
command for descriptions of the options.

1.34 MUIRexx.guide/switch

MUIRexx 27 / 63

-- Command: switch ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PRESS ←↩
/S,

APP/S, DROP/S, ICON/K, PICT/K, TRANS/S, LABEL/K/F, ATTRS/K/M
Switch gadget objects are created with this command. Text,
button, image and switch gadgets are essentially identical with
the only difference being the base object class to create each
type of object. The switch gadget also differs in that its select
state toggles with each press. All options are identical for
these objects. Refer to the

text
command for descriptions of the

options.

1.35 MUIRexx.guide/check

-- Command: check ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
STRING=STRINGS/K, ATTRS/K/M

Check gadget objects are created with this command.

* ID [I..] - an id can be assigned to a check gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the check gadget has been previously created, then the
select state string will be returned in RESULT (if OPTIONS
RESULTS is specified in the script).

* COMMAND [IS.] - if given, the command will be executed
whenever the check gadget is pressed. The command will be
issued to the host port specified by the PORT argument. Note
that the command is run asyncronously (as a detached process)
and only inherits the global path if ‘MUIRexx’ is started
from a shell. The command text may contain a format
specifier (‘%s’) in which case before issuing the command the
format specifier will be replaced by the string given for the
check gadget select state (see the STRINGS argument
description).

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the check gadget is activated. If the port is
defined as COMMAND then the command will be issued to a DOS
shell (global path will be in affect only if ‘MUIRexx’ was
run from a shell). If this argument is not given but a
command is defined then the port will be defined as the port
for ‘ARexx’ (i.e. it will be assumed that the command is an
‘ARexx’ script). Note that the port may be defined as the
port of the application itself. In this manner objects
within an application can be linked as well as to objects in
another application.

* HELP [I..] - with this argument help text may be defined

MUIRexx 28 / 63

which will be displayed as balloon help whenever the pointer
is over the associated check gadget. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
check gadget and presses the help button on the keyboard then
the guide file will be displayed at the node location.

* STRING=STRINGS [ISG] - strings may be defined, by this
option, that will be returned depending on the select state
of the check gadget. The first defines the unselected string
and the second defines the selected. If not specified then
the unselected string will be set to 0 and the selected
string will be set to 1.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with the check command are:

TAG_Name = TAG_id Flags Type

ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */

MUIRexx 29 / 63

VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window ID MRX1 TITLE ’"demo"’ COMMAND ’"window ID MRX1 CLOSE"’ PORT DEMO
group

check ID CHK1 STRINGS ’"no,yes"’ ATTRS Selected TRUE
.
.
.

endgroup
endwindow

1.36 MUIRexx.guide/cycle

-- Command: cycle ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
LABEL=LABELS/K, ATTRS/K/M

Cycle gadget objects are created with this command. Cycle and
radio gadgets are essentially identical with the only difference
being the base object class to create each type of object. All
options are identical for these objects.

* ID [I..] - an id can be assigned to a gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the gadget has been previously created, then the
currently selected label will be returned in RESULT (if
OPTIONS RESULTS is specified in the script).

* COMMAND [IS.] - if given, the command will be executed
whenever the gadget is selected. The command will be issued
to the host port specified by the PORT argument. Note that
the command is run asyncronously (as a detached process) and
only inherits the global path if ‘MUIRexx’ is started from a
shell. The command text may contain a format specifier
(‘%s’) in which case before issuing the command the format
specifier will be replaced by the gadget active label (see the
LABELS argument description).

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the gadget is activated. If the port is defined as
COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

MUIRexx 30 / 63

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated gadget. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
gadget and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* LABELS [ISG] - a series of strings (separated by commas) may
be specified by this argument. These strings are used as the
labels for the gadget object. The currently displayed label
may be retrieved by issuing the gadget command with an
existing ID. Also, the selected label may be set by issuing
the gadget command with an existing ID and label. Note that
the labels may contain any of the special formatting
sequences (see

MUI Format Sequences
).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Cycle_Active = 0x80421788 /* V4 isg LONG */
Radio_Active = 0x80429b41 /* V4 isg LONG */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */

MUIRexx 31 / 63

FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window ID PAGE TITLE ’"Character Definition"’
group HORIZ

group
label SINGLE ’Name:’
label SINGLE ’Sex:’

endgroup
group

string ID NAME CONTENT ’Frodo’
cycle ID SEX LABELS ’male,female’

endgroup
endgroup
space 2
group REGISTER LABELS ’Race,Class,Armor,Level’

group FRAME
radio ID RACE LABELS ’Human,Elf,Dwarf,Hobbit,Gnome’

endgroup
.
.
.

endwindow

cycle ID SEX
say result
radio ID RACE
say result

1.37 MUIRexx.guide/radio

-- Command: radio ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
LABEL=LABELS/K, ATTRS/K/M

Radio gadget objects are created with this command. Cycle and
radio gadgets are essentially identical with the only difference
being the base object class to create each type of object. All
options are identical for these objects. Refer to the

cycle
command for descriptions of the options.

MUIRexx 32 / 63

1.38 MUIRexx.guide/string

-- Command: string ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
CONTENT/K/F, ATTRS/K/M

String gadget objects are created with this command. String and
popasl gadgets are essentially identical with the only difference
being the base object class to create each type of object. All
options are identical for these objects. Refer to the

cycle
command for descriptions of the options.

* ID [I..] - an id can be assigned to a string gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the string gadget has been previously created, then the
current string gadget content will be returned in RESULT (if
OPTIONS RESULTS is specified in the script).

* COMMAND [IS.] - if given, the command will be executed
whenever the string is entered (i.e. a carriage return is
hit while the gadget is active). The command will be issued
to the host port specified by the PORT argument. Note that
the command is run asyncronously (as a detached process) and
only inherits the global path if ‘MUIRexx’ is started from a
shell. The command text may contain a format specifier
(‘%s’) in which case before issuing the command the format
specifier will be replaced by the string gadget contents (see
the CONTENT argument description).

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the string gadget is activated. If the port is
defined as COMMAND then the command will be issued to a DOS
shell (global path will be in affect only if ‘MUIRexx’ was
run from a shell). If this argument is not given but a
command is defined then the port will be defined as the port
for ‘ARexx’ (i.e. it will be assumed that the command is an
‘ARexx’ script). Note that the port may be defined as the
port of the application itself. In this manner objects
within an application can be linked as well as to objects in
another application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated string gadget. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
string gadget and presses the help button on the keyboard
then the guide file will be displayed at the node location.

MUIRexx 33 / 63

* CONTENT [ISG] - the contents of the string gadget is given by
this argument.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

String_Accept = 0x8042e3e1 /* V4 isg STRPTR */
String_AdvanceOnCR = 0x804226de /* V11 isg BOOL */
String_BufferPos = 0x80428b6c /* V4 .sg LONG */
String_Contents = 0x80428ffd /* V4 isg STRPTR */
String_DisplayPos = 0x8042ccbf /* V4 .sg LONG */
String_Format = 0x80427484 /* V4 i.g LONG */
String_Integer = 0x80426e8a /* V4 isg ULONG */
String_MaxLen = 0x80424984 /* V4 i.g LONG */
String_Reject = 0x8042179c /* V4 isg STRPTR */
String_Secret = 0x80428769 /* V4 i.g BOOL */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

MUIRexx 34 / 63

Example use of this command:

window ID MAIN TITLE ’"ShowIcon"’
group HORIZ

button ’"parent"’ WEIGHT 0 COMMAND ’"showicon /"’
string ID STRG COMMAND ’"dirlist ID LIST PATH %s"’ PORT SHOW

endgroup
.
.
.
popasl ID 104 HELP ’"this is an example popasl gadget"’

endwindow

string ID STRG
say result

1.39 MUIRexx.guide/popasl

-- Command: popasl ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
CONTENT/K/F, ATTRS/K/M

Popasl gadget objects are created with this command. String and
popasl gadgets are essentially identical with the only difference
being the base object class to create each type of object. The
most notable difference is that the popasl object has an attached
button that allows the user to bring up an ASL file requestor.
The selected file is placed into the string content. All options
are identical for these objects. Refer to the

string
command for

descriptions of the options.

1.40 MUIRexx.guide/slider

-- Command: slider ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS/K/M
Slider gadget objects are created with this command. Slider,
popslider and knob gadgets are essentially identical with the only
difference being the base object class to create each type of
object. All options are identical for these objects.

* ID [I..] - an id can be assigned to a slider gadget for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the slider gadget has been previously created, then the
current slider level will be returned in RESULT (if OPTIONS
RESULTS is specified in the script).

MUIRexx 35 / 63

* COMMAND [IS.] - if given, the command will be executed
whenever the slider gadget is changed. The command will be
issued to the host port specified by the PORT argument. Note
that the command is run asyncronously (as a detached process)
and only inherits the global path if ‘MUIRexx’ is started
from a shell. The command text may contain a format
specifier (‘%s’) in which case before issuing the command the
format specifier will be replaced by the slider gadget level.
Caution must be taken since movement of the slider can

result in a lot of commands. If the command is at all time
consuming the result will be very sluggish slider action.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the slider gadget is activated. If the port is
defined as COMMAND then the command will be issued to a DOS
shell (global path will be in affect only if ‘MUIRexx’ was
run from a shell). If this argument is not given but a
command is defined then the port will be defined as the port
for ‘ARexx’ (i.e. it will be assumed that the command is an
‘ARexx’ script). Note that the port may be defined as the
port of the application itself. In this manner objects
within an application can be linked as well as to objects in
another application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated slider gadget. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
slider gadget and presses the help button on the keyboard
then the guide file will be displayed at the node location.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’

MUIRexx 36 / 63

variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Slider_Horiz = 0x8042fad1 /* V11 isg BOOL */
Slider_Level = 0x8042ae3a /* V4 isg LONG */
Slider_Max = 0x8042d78a /* V4 isg LONG */
Slider_Min = 0x8042e404 /* V4 isg LONG */
Slider_Quiet = 0x80420b26 /* V6 i.. BOOL */
Slider_Reverse = 0x8042f2a0 /* V4 isg BOOL */
Numeric_Default = 0x804263e8 /* V11 isg LONG */
Numeric_Format = 0x804263e9 /* V11 isg STRPTR */
Numeric_Max = 0x8042d78a /* V11 isg LONG */
Numeric_Min = 0x8042e404 /* V11 isg LONG */
Numeric_Reverse = 0x8042f2a0 /* V11 isg BOOL */
Numeric_RevLeftRight = 0x804294a7 /* V11 isg BOOL */
Numeric_RevUpDown = 0x804252dd /* V11 isg BOOL */
Numeric_Value = 0x8042ae3a /* V11 isg LONG */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window ID DEMO
.
.
.
group HORIZ

space HORIZ
group

knob ID KNOB HELP ’"an example knob gadget"’
popslider ID PSLD HELP ’"an example popup slider gadget"’

endgroup
meter ID METR NODE ’"meter"’ LABEL ’"meter"’
space HORIZ

endgroup
slider ID SLDR ATTRS Slider_Level 50
gauge ID GAUG NODE ’"gauge"’ LABEL ’"level %ld"’ ATTRS Gauge_Horiz ←↩

TRUE
object CLASS ’"Scale.mui"’

endwindow

MUIRexx 37 / 63

1.41 MUIRexx.guide/popslider

-- Command: popslider ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
ATTRS/K/M

Popslider gadget objects are created with this command. Slider,
popslider and knob gadgets are essentially identical with the only
difference being the base object class to create each type of
object. Specifically, while unselected the gadget displays the
current numeric value in a button. If selected then a slider pops
up allowing selection of a new value. All options are identical
for these objects. Refer to the

slider
command for descriptions

of the options.

1.42 MUIRexx.guide/knob

-- Command: knob ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, ATTRS/K ←↩
/M

Knob gadget objects are created with this command. Slider,
popslider and knob gadgets are essentially identical with the only
difference being the base object class to create each type of
object. All options are identical for these objects. Refer to
the

slider
command for descriptions of the options.

1.43 MUIRexx.guide/list

-- Command: list ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PRESS/S ←↩
,

APP/S, DROP/S, INSERT/S, UPDATE/S, NODUP/S, TOGGLE/S,
STRING/K/F, ATTRS/K/M

List objects are created with this command.

* ID [I..] - an id can be assigned to a list for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the list object has been previously created, then the
currently selected line will be returned in RESULT (if
OPTIONS RESULTS is specified in the script). If multiple

MUIRexx 38 / 63

lines are selected then each line string will be returned
with each list command. The line entry in the list will be
deselected. A null string ("") will be returned if no lines
are selected (or the last selected line has been reached).

* COMMAND [IS.] - if given, the command will be executed
whenever an item in the list is double clicked (PRESS switch
specified or default for no switch), an icon is dropped (APP
switch), or another object is dropped (DROP switch) on the
list. The command will be issued to the host port specified
by the PORT argument. Note that the command is run
asyncronously (as a detached process) and only inherits the
global path if ‘MUIRexx’ is started from a shell. The
command text may contain a format specifier (‘%s’) in which
case before issuing the command the format specifier will be
replaced by the list selected text line, an icon name (if an
icon was dropped on the list), or another objects label (if an
object is dropped on the list). Note that commands may be
defined after the gadget has been created. In this way
different commands may be defined for each action.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the list is activated. If the port is defined as
COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated list. Of course, this is dependant on
whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
list and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* PRESS [IS.] - if this flag is given then the specified
command (given in the COMMAND option) will will issued if a
line in the list is double clicked.

* APP [IS.] - if this flag is given then the specified command
(given in the COMMAND option) will will issued if an icon is
dropped on the list from the Workbench.

* DROP [IS.] - if this flag is given then the specified command
(given in the COMMAND option) will will issued if another
object is dropped on the list through a drag and drop

MUIRexx 39 / 63

operation.

* INSERT [.S.] - if this switch is given then any string
supplied by the STRING argument will be inserted into the
current list. Note that the display will not be updated
unless the UPDATE switch is also given. This allows a series
of inserts to be performed without updating the display.

* UPDATE [.S.] - if this switch is given then the current
displayed list will be updated to reflect any changes to the
list.

* NODUP [IS.] - if this switch is given then no duplicate
strings will be displayed even if they are in the list.

* TOGGLE [.S.] - if this switch is given then the select state
of each displayed string will be toggled.

* STRING [ISG] - a string to be entered into the list may be
specified by this argument. Note that the string may contain
any of the special formatting sequences (see

MUI Format Sequences
).

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

List_Active = 0x8042391c /* V4 isg LONG */
List_AdjustHeight = 0x8042850d /* V4 i.. BOOL */
List_AdjustWidth = 0x8042354a /* V4 i.. BOOL */
List_AutoVisible = 0x8042a445 /* V11 isg BOOL */
List_DragSortable = 0x80426099 /* V11 isg BOOL */
List_DropMark = 0x8042aba6 /* V11 ..g LONG */

MUIRexx 40 / 63

List_Entries = 0x80421654 /* V4 ..g LONG */
List_First = 0x804238d4 /* V4 ..g LONG */
List_Format = 0x80423c0a /* V4 isg STRPTR */
List_InsertPosition = 0x8042d0cd /* V9 ..g LONG */
List_MinLineHeight = 0x8042d1c3 /* V4 i.. LONG */
List_Quiet = 0x8042d8c7 /* V4 .s. BOOL */
List_ShowDropMarks = 0x8042c6f3 /* V11 isg BOOL */
List_Title = 0x80423e66 /* V6 isg char * */
List_Visible = 0x8042191f /* V4 ..g LONG */
Listview_ClickColumn = 0x8042d1b3 /* V7 ..g LONG */
Listview_DefClickColumn = 0x8042b296 /* V7 isg LONG */
Listview_DoubleClick = 0x80424635 /* V4 i.g BOOL */
Listview_DragType = 0x80425cd3 /* V11 isg LONG */
Listview_Input = 0x8042682d /* V4 i.. BOOL */
Listview_MultiSelect = 0x80427e08 /* V7 i.. LONG */
Listview_ScrollerPos = 0x8042b1b4 /* V10 i.. BOOL */
Listview_SelectChange = 0x8042178f /* V4 ..g BOOL */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window ID DEMO
list ID SLST ATTRS List_Format "MIW=25 BAR,MIW=25 BAR,MIW=25"’
.
.
.

endwindow
list ID SLST INSERT UPDATE STRING ’"column 1,column 2,column 3"’

1.44 MUIRexx.guide/dirlist

-- Command: dirlist ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, PRESS/S,
APP/S, DROP/S, PATH/K, PATTERN/K, REREAD/S ,TOGGLE/S,
ATTRS/K/M

Dirlist objects are created with this command.

* ID [I..] - an id can be assigned to a dirlist for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the dirlist has been previously created, then the
currently selected file (with path) will be returned in
RESULT (if OPTIONS RESULTS is specified in the script). If
multiple files are selected then each file name (with path)
will be returned with each dirlist command. The file name
entry in the list will be deselected. A null string ("")

MUIRexx 41 / 63

will be returned if no files are selected (or the last
selected file has been reached).

* COMMAND [IS.] - if given, the command will be executed
whenever an item in the dirlist is double clicked (PRESS
switch specified or default for no switch), an icon is
dropped (APP switch), or another object is dropped (DROP
switch) on the dirlist. The command will be issued to the
host port specified by the PORT argument. Note that the
command is run asyncronously (as a detached process) and only
inherits the global path if ‘MUIRexx’ is started from a
shell. The command text may contain a format specifier
(‘%s’) in which case before issuing the command the format
specifier will be replaced by the dirlist selected line, an
icon name (if an icon was dropped on the list), or another
objects label (if an object is dropped on the list). Note
that commands may be defined after the gadget has been
created. In this way different commands may be defined for
each action.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the dirlist is activated. If the port is defined as
COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated dirlist. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
dirlist and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* PRESS [IS.] - if this flag is given then the specified
command (given in the COMMAND option) will will issued if a
line in the dirlist is double clicked.

* APP [IS.] - if this flag is given then the specified command
(given in the COMMAND option) will will issued if an icon is
dropped on the dirlist from the Workbench.

* DROP [IS.] - if this flag is given then the specified command
(given in the COMMAND option) will will issued if another
object is dropped on the dirlist through a drag and drop
operation.

MUIRexx 42 / 63

* PATH [ISG] - at creation this argument specifies the initial
directory path. When the dirlist command is issued with just
the ID argument a fully qualified path name is returned for
the file or directory selected in the listview.

* PATTERN [IS.] - this argument sets the accept pattern for the
directory list. Any standard AmigaDOS pattern may be given.
Note that if a path is set (see PATH argument) or the
directory is reread (see REREAD argument) then this pattern
will be reflected.

* REREAD [.S.] - if this switch is given then the dirlist will
be updated with the current directory.

* TOGGLE [.S.] - if this switch is given then the select state
of each displayed file will be toggled.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Dirlist_Directory = 0x8042ea41 /* V4 isg STRPTR */
Dirlist_DrawersOnly = 0x8042b379 /* V4 is. BOOL */
Dirlist_FilesOnly = 0x8042896a /* V4 is. BOOL */
Dirlist_FilterDrawers = 0x80424ad2 /* V4 is. BOOL */
Dirlist_MultiSelDirs = 0x80428653 /* V6 is. BOOL */
Dirlist_NumBytes = 0x80429e26 /* V4 ..g LONG */
Dirlist_NumDrawers = 0x80429cb8 /* V4 ..g LONG */
Dirlist_NumFiles = 0x8042a6f0 /* V4 ..g LONG */
Dirlist_RejectIcons = 0x80424808 /* V4 is. BOOL */
Dirlist_SortDirs = 0x8042bbb9 /* V4 is. LONG */
Dirlist_SortHighLow = 0x80421896 /* V4 is. BOOL */
Dirlist_SortType = 0x804228bc /* V4 is. LONG */
Dirlist_Status = 0x804240de /* V4 ..g LONG */

MUIRexx 43 / 63

List_Active = 0x8042391c /* V4 isg LONG */
List_AdjustHeight = 0x8042850d /* V4 i.. BOOL */
List_AdjustWidth = 0x8042354a /* V4 i.. BOOL */
List_AutoVisible = 0x8042a445 /* V11 isg BOOL */
List_DragSortable = 0x80426099 /* V11 isg BOOL */
List_DropMark = 0x8042aba6 /* V11 ..g LONG */
List_Entries = 0x80421654 /* V4 ..g LONG */
List_First = 0x804238d4 /* V4 ..g LONG */
List_Format = 0x80423c0a /* V4 isg STRPTR */
List_InsertPosition = 0x8042d0cd /* V9 ..g LONG */
List_MinLineHeight = 0x8042d1c3 /* V4 i.. LONG */
List_Quiet = 0x8042d8c7 /* V4 .s. BOOL */
List_ShowDropMarks = 0x8042c6f3 /* V11 isg BOOL */
List_Title = 0x80423e66 /* V6 isg char * */
List_Visible = 0x8042191f /* V4 ..g LONG */
Listview_ClickColumn = 0x8042d1b3 /* V7 ..g LONG */
Listview_DefClickColumn = 0x8042b296 /* V7 isg LONG */
Listview_DoubleClick = 0x80424635 /* V4 i.g BOOL */
Listview_DragType = 0x80425cd3 /* V11 isg LONG */
Listview_Input = 0x8042682d /* V4 i.. BOOL */
Listview_MultiSelect = 0x80427e08 /* V7 i.. LONG */
Listview_ScrollerPos = 0x8042b1b4 /* V10 i.. BOOL */
Listview_SelectChange = 0x8042178f /* V4 ..g BOOL */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
dirlist ID DIR1 PATH ’"ram:"’ PRESS APP DROP,

COMMAND ’"dirlist ID DIR1 PATH %s"’ PORT DEMO NODE ’"dirlist"’,
ATTRS Frame Frame_Text Listview_DragType ←↩

Listview_DragType_Immediate
.
.
.

endwindow

dirlist ID DIR1 ATTRS Dirlist_Directory
say result

1.45 MUIRexx.guide/volumelist

-- Command: volumelist ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K,
ATTRS/K/M

volumelist objects are created with this command.

MUIRexx 44 / 63

* ID [I..] - an id can be assigned to a volumelist for later
reference. The id can be any combination of up to 5
characters. If the id is given without any other arguments,
and the volumelist has been previously created, then the
currently selected volume will be returned in RESULT (if
OPTIONS RESULTS is specified in the script).

* COMMAND [IS.] - if given, the command will be executed
whenever an item in the volumelist is double clicked. The
command will be issued to the host port specified by the PORT
argument. Note that the command is run asyncronously (as a
detached process) and only inherits the global path if
‘MUIRexx’ is started from a shell. The command text may
contain a format specifier (‘%s’) in which case before
issuing the command the format specifier will be replaced by
the volumelist selected item.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the volumelist is activated. If the port is defined
as COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated volumelist. Of course, this is
dependant on whether the user set up balloon help in the MUI
preference settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
volumelist and presses the help button on the keyboard then
the guide file will be displayed at the node location.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.

MUIRexx 45 / 63

Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

List_Active = 0x8042391c /* V4 isg LONG */
List_AdjustHeight = 0x8042850d /* V4 i.. BOOL */
List_AdjustWidth = 0x8042354a /* V4 i.. BOOL */
List_AutoVisible = 0x8042a445 /* V11 isg BOOL */
List_DragSortable = 0x80426099 /* V11 isg BOOL */
List_DropMark = 0x8042aba6 /* V11 ..g LONG */
List_Entries = 0x80421654 /* V4 ..g LONG */
List_First = 0x804238d4 /* V4 ..g LONG */
List_Format = 0x80423c0a /* V4 isg STRPTR */
List_InsertPosition = 0x8042d0cd /* V9 ..g LONG */
List_MinLineHeight = 0x8042d1c3 /* V4 i.. LONG */
List_Quiet = 0x8042d8c7 /* V4 .s. BOOL */
List_ShowDropMarks = 0x8042c6f3 /* V11 isg BOOL */
List_Title = 0x80423e66 /* V6 isg char * */
List_Visible = 0x8042191f /* V4 ..g LONG */
Listview_ClickColumn = 0x8042d1b3 /* V7 ..g LONG */
Listview_DefClickColumn = 0x8042b296 /* V7 isg LONG */
Listview_DoubleClick = 0x80424635 /* V4 i.g BOOL */
Listview_DragType = 0x80425cd3 /* V11 isg LONG */
Listview_Input = 0x8042682d /* V4 i.. BOOL */
Listview_MultiSelect = 0x80427e08 /* V7 i.. LONG */
Listview_ScrollerPos = 0x8042b1b4 /* V10 i.. BOOL */
Listview_SelectChange = 0x8042178f /* V4 ..g BOOL */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
volumelist,

COMMAND ’"dirlist ID DIR1 PATH %s"’ PORT DEMO NODE ’"volumelist ←↩
"’,

ATTRS Weight 50
.
.
.

endwindow

MUIRexx 46 / 63

1.46 MUIRexx.guide/object

-- Command: object ID/K, COMMAND/K, PORT/K, HELP/K, NODE/K, CLASS/K,
TRIG/K, VAL/K, BOOPSI/S, ATTRS/K/M

Objects from MUI internal, external and BOOPSI classes are created
with this command. Note that while this is a very powerful and
flexible command it can easily result in the unexpected, including
system crashes, so beware.

* ID [I..] - an id can be assigned to an object for later
reference. The id can be any combination of up to 5
characters.

* COMMAND [IS.] - if given, the command will be executed
whenever the object is triggered (see the TRIG and VAL
options). The command will be issued to the host port
specified by the PORT argument. Note that the command is run
asyncronously (as a detached process) and only inherits the
global path if ‘MUIRexx’ is started from a shell.

* PORT [I..] - a specific host port may be specified by this
argument. The defined command will be issued to this port
whenever the object is triggered. If the port is defined as
COMMAND then the command will be issued to a DOS shell
(global path will be in affect only if ‘MUIRexx’ was run from
a shell). If this argument is not given but a command is
defined then the port will be defined as the port for ‘ARexx’
(i.e. it will be assumed that the command is an ‘ARexx’
script). Note that the port may be defined as the port of
the application itself. In this manner objects within an
application can be linked as well as to objects in another
application.

* HELP [I..] - with this argument help text may be defined
which will be displayed as balloon help whenever the pointer
is over the associated object. Of course, this is dependant
on whether the user set up balloon help in the MUI preference
settings.

* NODE [I..] - this argument is used to specify a node in the
guide file given in the command line argument HELP for
‘MUIRexx’. If the user positions the mouse pointer over the
object and presses the help button on the keyboard then the
guide file will be displayed at the node location.

* CLASS [I..] - this argument allows specification of the
object class. The class may be any internal or external MUI
or BOOPSI (see the BOOPSI option) gadget class.

* TRIG [I..] - this argument allows specification of a
notification trigger TAG. By default the trigger is the MUIA
Pressed TAG.

* VAL [I..] - this argument allows specification of a
notification trigger value. By default the value is FALSE.

MUIRexx 47 / 63

* BOOPSI [I..] - if this switch is given then the object will be
created from a BOOPSI gadget class. BOOPSI objects will, by
default, have the following TAG ids and values set:

TAG value

GA_Left 0
GA_Top 0
GA_Width 0
GA_Height 0
ICA_TARGET ICTARGET_IDCMP

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs (or
the autodocs specific to the object class specified) be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Boopsi_MaxHeight = 0x8042757f /* V4 isg ULONG */
Boopsi_MaxWidth = 0x8042bcb1 /* V4 isg ULONG */
Boopsi_MinHeight = 0x80422c93 /* V4 isg ULONG */
Boopsi_MinWidth = 0x80428fb2 /* V4 isg ULONG */
Boopsi_Remember = 0x8042f4bd /* V4 i.. ULONG */
Boopsi_Smart = 0x8042b8d7 /* V9 i.. BOOL */
Boopsi_TagDrawInfo = 0x8042bae7 /* V4 isg ULONG */
Boopsi_TagScreen = 0x8042bc71 /* V4 isg ULONG */
Boopsi_TagWindow = 0x8042e11d /* V4 isg ULONG */
ControlChar = 0x8042120b /* V4 isg char */
CycleChain = 0x80421ce7 /* V11 isg LONG */
Disabled = 0x80423661 /* V4 isg BOOL */
Draggable = 0x80420b6e /* V11 isg BOOL */
FillArea = 0x804294a3 /* V4 is. BOOL */
FixHeight = 0x8042a92b /* V4 i.. LONG */
FixHeightTxt = 0x804276f2 /* V4 i.. STRPTR */
FixWidth = 0x8042a3f1 /* V4 i.. LONG */
FixWidthTxt = 0x8042d044 /* V4 i.. STRPTR */

MUIRexx 48 / 63

HorizDisappear = 0x80429615 /* V11 isg LONG */
HorizWeight = 0x80426db9 /* V4 isg WORD */
MaxHeight = 0x804293e4 /* V11 i.. LONG */
MaxWidth = 0x8042f112 /* V11 i.. LONG */
Selected = 0x8042654b /* V4 isg BOOL */
ShowMe = 0x80429ba8 /* V4 isg BOOL */
ShowSelState = 0x8042caac /* V4 i.. BOOL */
VertDisappear = 0x8042d12f /* V11 isg LONG */
VertWeight = 0x804298d0 /* V4 isg WORD */
Weight = 0x80421d1f /* V4 i.. WORD */

Example use of this command:

WHEEL_Hue = 0x84000001
WHEEL_Saturation = 0x84000002
WHEEL_Screen = 0x84000009

window TITLE ’"MUIRexx Demo"’ COMMAND ’"quit"’ PORT DEMO
group HORIZ

group
label DOUBLE ’"Hue:"’
label DOUBLE ’"Saturation:"’

endgroup
group

gauge ID HUE ATTRS Gauge_Max 16384,
Gauge_Divide 262144,
Gauge_Horiz TRUE

gauge ID SAT ATTRS Gauge_Max 16384,
Gauge_Divide 262144,
Gauge_Horiz TRUE

endgroup
endgroup
object ID BOOP BOOPSI CLASS ’"colorwheel.gadget"’,

ATTRS Boopsi_MinWidth 30,
Boopsi_MinHeight 30,
Boopsi_Remember WHEEL_Hue,
Boopsi_Remember WHEEL_Saturation,
Boopsi_TagScreen WHEEL_Screen,
WHEEL_Screen 0,
WHEEL_Saturation 0,
FillArea TRUE

.

.

.
endwindow

method ID BOOP Notify WHEEL_Hue EveryTime,
@HUE 4 Set Gauge_Current TriggerValue

method ID BOOP Notify WHEEL_Saturation EveryTime,
@SAT 4 Set Gauge_Current TriggerValue

1.47 MUIRexx.guide/Misc

MUIRexx 49 / 63

Misc
====

These commands don’t fit any of the previous categories so here they
are.

request

method

setvar

getvar

application

1.48 MUIRexx.guide/request

-- Command: request ID/K, TITLE/K, GADGETS/K, FILE/K, STRING/F
This command will bring up a standard ‘MUI’ requester. Note that
this command is syncronous. That is once it is issued it will not
return a result until the user has selected a gadget. Once a
gadget has been selected then a number will be returned in the
‘ARexx’ variable RESULT (assuming ‘options results’ was specified
in the script). The first gadget will return a 1, the second a 2,
and so on. The last gadget, however, will return a 0 (this is by
convention since the last gadget is typically a CANCEL or
equivilent gadget).

* ID - this argument specifies a window ID. If specified then
the requester will be centered in the window.

* TITLE - this argument specifies the requester title (placed
in the title bar of the requester window).

* GADGETS - this argument specifies the gadget labels. The
labels are given as a single string with a vertical bar, |
used to separate each label. Additionally, each label can
contain an underscore, _ prior to any character. The
character will be the keyboard shortcut to activate the
associated gadget.

* FILE - if given, this argument specifies the file to get the
contents for the requester. All line breaks in the file will
be included. Note that this argument overrides the STRING
argument.

* STRING - this argument specifies the string to display in the
requester.

Example use of this command:

MUIRexx 50 / 63

request ID MDIR GADGETS ’"OK|Cancel"’ ’"Delete selected entries?"’

1.49 MUIRexx.guide/method

-- Command: method ID/K, ARGS/M
This command allows construction of class methods (ala the domethod
function). While this command is very powerful it is also quite
complicated and possibly dangerous (can result in system crashes).
Care should be taken by consulting the autodocs describing the

method to be constructed.

* ID - this argument specifies the ID of the reference object
for the method. If it is not given then the application
object will be used.

* ARGS - these arguments are the remaining arguments passed to
the domethod function. The arguments may be TAG ids, TAG
values, strings or object pointers. TAG ids should be given
as hexidecimal numbers (numbers preceded by an 0X). TAG
values may be numbers or strings. Object pointers are
specified by preceding an object ID with an @.

Example use of this command:

method Application_AboutMUI 0 /* bring up about_MUI requester */
method Application_OpenConfigWindow /* open MUI settings program */

/* some example notification methods */

method ID BOOP Notify WHEEL_Hue EveryTime,
@HUE 4 Set Gauge_Current TriggerValue

method ID BOOP Notify WHEEL_Saturation EveryTime,
@SAT 4 Set Gauge_Current TriggerValue

1.50 MUIRexx.guide/setvar

-- Command: setvar NAME/A, VALUE/F
This command will set an internal ‘MUIRexx’ variable to any value
(stored as a string) which can be retrieved or reset later within
the same application (not necessarily the same script). This
ability can be used to pass information between ‘ARexx’ scripts
used in the same application.

* NAME - this argument defines the variable name.

* VALUE - this argument defines the value of the variable and
can consist of any characters.

MUIRexx 51 / 63

1.51 MUIRexx.guide/getvar

-- Command: getvar NAME/A
This command will retrieve an internal ‘MUIRexx’ variable. The
value will be placed into the ‘ARexx’ variable RESULT (assuming
OPTIONS RESULTS was specified in the calling script).

* NAME - this argument specifies the variable name.

1.52 MUIRexx.guide/application

-- Command: application ATTRS/K/M
This command allows attributes to be set and retrieved for the
application object.

* ATTRS [ISG] - with this option any MUIA attribute TAGs may be
set or retrieved. While this capability allows for much
flexibility it also can lead to unexpected results. It is
recommended that before using a TAG that the MUI autodocs be
referenced in order to clearly understand the effect the TAG
will have. All TAGs are set by specifying a TAG id and value
pair. Any number of TAG pairs may be given. TAG ids should
be given as hexidecimal numbers (preceded by a ‘0x’),
although decimal numbers may also be used. Typically, TAG
ids should be assigned to an ‘ARexx’ variable for script
clarity. TAG values may be either decimal numbers,
hexadecimal numbers, or strings (the value will be assumed to
be a string if it is not recognized as a number). Note that
strings passed as values are volatile, that is you cannot
depend on their contents remaining after the TAG is set.
Note that all TAGs indicated with an ‘i’ flag can be set at
object creation. The ‘s’ flag indicates a TAG that can be set
after object creation and the ‘g’ indicates a TAG that can be
retrieved. To retrieve a TAG value just specify the TAG id
alone. The TAG value will be returned in the ‘ARexx’
variable RESULT.

Some useful TAGs for use with this command are:

TAG_Name = TAG_id Flags Type

Application_Active = 0x804260ab /* V4 isg BOOL */
Application_Author = 0x80424842 /* V4 i.g STRPTR */
Application_Base = 0x8042e07a /* V4 i.g STRPTR */
Application_Copyright = 0x8042ef4d /* V4 i.g STRPTR */
Application_Description = 0x80421fc6 /* V4 i.g STRPTR */
Application_DoubleStart = 0x80423bc6 /* V4 ..g BOOL */

MUIRexx 52 / 63

Application_Iconified = 0x8042a07f /* V4 .sg BOOL */
Application_Sleep = 0x80425711 /* V4 .s. BOOL */
Application_Title = 0x804281b8 /* V4 i.g STRPTR */
Application_Version = 0x8042b33f /* V4 i.g STRPTR */

Example use of this command:

application Application_Iconified TRUE /* forces iconification */

application Application_Version
say result

1.53 MUIRexx.guide/Example Macro

Example Macro

/* A simple example based on one of the demos supplied with MUI */
options results

Selected = 0x8042654b /* V4 isg BOOL */
Slider_Level = 0x8042ae3a /* V4 isg LONG */

TRUE = 1

address PAGES

window ID PAGE TITLE ’"Character Definition"’ COMMAND ’quit’ PORT PAGES
group HORIZ

group
label SINGLE ’Name:’
label SINGLE ’Sex:’

endgroup
group

string ID NAME CONTENT ’Frodo’
cycle ID SEX LABELS ’male,female’

endgroup
endgroup

space 2
group REGISTER LABELS ’Race,Class,Armor,Level’

group FRAME
radio ID RACE LABELS ’Human,Elf,Dwarf,Hobbit,Gnome’

endgroup
group FRAME

radio ID CLAS LABELS ’Warrior,Rogue,Bard,Monk,Magician,Archmage’
endgroup

group
group HORIZ

group
label SINGLE ’Cloak:’
label SINGLE ’Shield:’
label SINGLE ’Gloves:’

MUIRexx 53 / 63

label SINGLE ’Helmet:’
endgroup
group

check ID CHK1 ATTRS Selected TRUE
check ID CHK2 ATTRS Selected TRUE
check ID CHK3 ATTRS Selected TRUE
check ID CHK4 ATTRS Selected TRUE

endgroup
endgroup

endgroup

group
group HORIZ

group
label DOUBLE ’Experience:’
label DOUBLE ’Strength:’
label DOUBLE ’Dexterity:’
label DOUBLE ’Condition:’
label DOUBLE ’Intelligence:’

endgroup
group

slider ATTRS Slider_Level 3
slider ATTRS Slider_Level 42
slider ATTRS Slider_Level 24
slider ATTRS Slider_Level 39
slider ATTRS Slider_Level 74

endgroup
endgroup

endgroup

endgroup
endwindow
exit

1.54 MUIRexx.guide/MUI Format Sequences

MUI Format Sequences

Whenever MUI prints strings, they may contain some special character
sequences defining format, color and style of the text.

* ’[NEWLINE]’ Start a new line. With this character you can e.g.
create multi line buttons. [Note that I cannot get this to work
:-(since it appears that ReadArgs() (which mui.library uses to
parse ‘ARexx’ command strings) interprets a newline as an end of
string, bummer]

* ’[ESC]-’ Disable text engine, following chars will be printed
without further parsing.

* ’[ESC]u’ Set the soft style to underline.

* ’[ESC]b’ Set the soft style to bold.

MUIRexx 54 / 63

* ’[ESC]i’ Set the soft style to italic.

* ’[ESC]n’ Set the soft style back to normal.

* ’[ESC]<n>’ Use pen number n (2..9) as front pen. n must be a valid
DrawInfo pen as specified in "intuition/screens.h".

* ’[ESC]c’ Center current (and following) line(s). This sequence is
only valid at the beginning of a string or after a newline
character.

* ’[ESC]r’ Right justify current (and following) line(s). This
sequence is only valid at the beginning of a string or after a
newline character.

* ’[ESC]l’ Left justify current (and following) line(s). This
sequence is only valid at the beginning of a string or after a
newline character.

* ’[ESC]I[<s>]’ Draw MUI image with specification <s> (see

MUI Image Specifications
).

Where [ESC] is ascii 27 (format syntax - "\033") and [NEWLINE] is ascii
10 (format syntax - "\n"). Note that there should be no space between
the [ESC] character and the format specification.

1.55 MUIRexx.guide/MUI Image Specifications

MUI Image Specifications

MUI Image specifications always starts with a digit, followed by a
’:’, followed by some parameters. Currently, the following things are
defined (all numeric parameters need to be ascii values!):

* "0:<x>" where <x> is between MUII_BACKGROUND and MUII_FILLBACK2
identifying a builtin pattern.

* "1:<x>" where <x> identifies a builtin standard image. Don’t use
this, use "6:<x>" instead.

* "2:<r>,<g>," where <r>, <g> and are 32-bit RGB color values
specified as 8-digit hex string (e.g. 00000000 or ffffffff).
Kick 2.x users will get an empty image.

* "3:<n>" where <n> is the name of an external boopsi image class.

* "4:<n>" where <n> is the name of an external MUI brush.

* "5:<n>" where <n> is the name of an external picture file that

MUIRexx 55 / 63

should be loaded with datatypes. Kick 2.x users will get an empty
image.

* "6:<x>" where <x> is between MUII_WindowBack (0) and MUII_Count-1
(41) identifying a preconfigured image/background.

1.56 MUIRexx.guide/MUI List Format

MUI List Format

MUI has the ability to handle multi column lists. To define how many
columns should be displayed and how they should be formatted, you
specify a format string.

This format string must contain one entry for each column you want
to see. Entries are seperated by commas, one entry is parsed via
dos.library/ReadArgs().

The template for a single entry looks like this:

DELTA=D/N, PREPARSE=P/K, WEIGHT=W/N, MINWIDTH=MIW/N, MAXWIDTH=MAW/N,
COL=C/N, BAR/S

* DELTA - Space in pixel between this column and the next. the last
displayed column ignores this setting. Defaults to 4.

* PREPARSE - A preparse value for this column. Setting this e.g. to
’[ESC]c’ would make the column centered (see

MUI Format Sequences
).

* WEIGHT - The weight of the column. As with MUI’s group class,
columns are layouted with a minimum size, a maximum size and
weight. A column with a weight of 200 would gain twice the space
than a column with a weight of 100. Defaults to 100.

* MINWIDTH - Minimum percentage width for the current column. If
your list is 200 pixel wide and you set this to 25, your column
will at least be 50 pixel. The special value -1 for this
parameter means that the minimum width is as wide as the widest
entry in this column. This ensures that every entry will be
completely visible (as long as the list is wide enough). Defaults
to -1.

* MAXWIDTH - Maximum percentage width for the current column. If
your list is 200 pixel wide and you set this to 25, your column
will not be wider as 50 pixel. The special value -1 for this
parameter means that the maximum width is as wide as the widest
entry in this column. Defaults to -1.

* COL - This value adjusts the number of the current column. This
allows you to adjust the order of your columns without having to
change your display hook. See example for details. Defaults to

MUIRexx 56 / 63

current entry number (0,1,...)

* BAR - Since muimaster.library V11, you can enable a vertical bar
between this and the next column by using this switch.

If your list object gets so small there is not enough place for the
minwidth of a column, this column will be hidden completely and the
remaining space is distributed between the remaining columns. This is
not true if the column is the first column, in this case the entries
will simply be clipped.

Note: You will have as many columns in your list as entries in the
format string (i.e. number of commas + 1). Empty entries, e.g. with
a format string of ",,,," are perfectly ok.

The default list format is an empty string (""), this means a one
column list without special formatting.

For a dirlist object the column data, starting at column zero (0),
is the file name, size, date, time, protection, and comment.

1.57 MUIRexx.guide/MagicUserInterface

MagicUserInterface

This application uses

MUI - MagicUserInterface

(C) Copyright 1993/94 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces.
With the aid of a preferences program, the user of an application
has the ability to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package
containing lots of examples and more information about registration
please look for a file called "muiXXusr.lha" (XX means the latest
version number) on your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send

DM 30.- or US$ 20.-

to

Stefan Stuntz

Eduard-Spranger-Straße 7

80935 München

MUIRexx 57 / 63

GERMANY

1.58 MUIRexx.guide/Acknowledgements

Acknowledgements

* William S. Hawes for development of ARexx.

* Stefan Stuntz for MagicUserInterface (MUI).

* Tom Ekström for Iconographics

* All those responsible for the development of the Amiga.

1.59 MUIRexx.guide/History

History

v1.0 2/13/96 - initial release
v1.1 2/24/96 - fixed enforcer hits

added support for menus
added a MUI settings command

2/25/96 - improved group/menu syntax checking
v1.2i 3/10/96 - added support for drag and drop

3/14/96 - added options to set MUIA attributes
removed unnecessary options (e.g. WEIGHT)

v2.0 3/20/96 - added variable storage (set and get)
3/22/96 - MUIA attributes are now gettable
3/23/96 - added support for dragging multiselected items

removed Cyclechain TAG (add using ATTRS)
removed SELECT option from check gadget

3/24/96 - added switch gadget
list objects are now dropable
group objects are now dropable

3/26/96 - stack size now set for commands
3/28/96 - added method command
3/30/96 - added object gadget

removed scale gadget (use object instead)
3/31/96 - added support for setting app attributes/methods

if started from WB then icon is set
added support for multicolumn lists
removed dirlist DIR and FORMAT options (use ATTRS)

4/1/96 - removed config and muiset commands (use method)
4/2/96 - added support for boopsi objects
4/5/96 - added support for datatype images

MUIRexx 58 / 63

1.60 MUIRexx.guide/Concept Index

Concept Index

ARexx
Introduction

Bars
space

Beginning a group definition
group

Beginning a menu definition
menu

Beginning a window definition
window

Changing group settings
Groups

Changing object settings
Objects

Check gadget select state
check

Closing a window
window

Cycle gadget labels
cycle

Deiconifying an application
show

Dirlist path
dirlist

Dock gadgets
text

Dynamic object creation
group

Ending a group definition
endgroup

Ending a menu definition
endmenu

MUIRexx 59 / 63

Ending a window definition
endwindow

Ending MUIRexx
quit

Failed script
quit

Features of MUIRexx
Introduction

Gadget label
text

Gauge label
gauge

Getting help on an application
help

Group frame
group

Icon gadgets
text

Iconifying an application
hide

Information on MUIRexx
info

Installing MUIRexx
Installation

Label justification
label

MagicUserInterface
Introduction

Menu item definition
item

Meter label
meter

Minimum system requirements
Requirements

Opening a window
endwindow

Popasl gadget content
popasl

MUIRexx 60 / 63

Popasl gadget weight
popasl

Radio gadget labels
radio

Radio gadget weight
radio

Register groups
group

Requester contents
request

Requester gadgets
request

Requester title
request

Retrieving group settings
Groups

Retrieving object settings
Objects

String gadget content
string

Terminating an application
window

Text color
MUI Format Sequences

Text format
MUI Format Sequences

Text justification
MUI Format Sequences

Text style
MUI Format Sequences

Updates of MUIRexx
Update Information

View string
view

View string file
view

Window sizing
space

MUIRexx 61 / 63

Window title
window

1.61 MUIRexx.guide/Command Index

Command Index

application
application

button
button

check
check

cycle
cycle

dirlist
dirlist

endgroup
endgroup

endmenu
endmenu

endwindow
endwindow

gauge
gauge

getvar
getvar

group
group

help
help

hide
hide

image
image

MUIRexx 62 / 63

info
info

item
item

knob
knob

label
label

list
list

menu
menu

meter
meter

method
method

object
object

popasl
popasl

popslider
popslider

quit
quit

radio
radio

request
request

setvar
setvar

show
show

slider
slider

space
space

string
string

MUIRexx 63 / 63

switch
switch

text
text

view
view

volumelist
volumelist

window
window

	MUIRexx
	MUIRexx.guide
	MUIRexx.guide/Update Information
	MUIRexx.guide/Introduction
	MUIRexx.guide/Disclaimer
	MUIRexx.guide/Conditions
	MUIRexx.guide/Requirements
	MUIRexx.guide/Installation
	MUIRexx.guide/Command Reference
	MUIRexx.guide/Standard Commands
	MUIRexx.guide/quit
	MUIRexx.guide/hide
	MUIRexx.guide/show
	MUIRexx.guide/info
	MUIRexx.guide/help
	MUIRexx.guide/Windows
	MUIRexx.guide/window
	MUIRexx.guide/endwindow
	MUIRexx.guide/Groups
	MUIRexx.guide/group
	MUIRexx.guide/endgroup
	MUIRexx.guide/Menus
	MUIRexx.guide/menu
	MUIRexx.guide/endmenu
	MUIRexx.guide/item
	MUIRexx.guide/Objects
	MUIRexx.guide/space
	MUIRexx.guide/label
	MUIRexx.guide/view
	MUIRexx.guide/gauge
	MUIRexx.guide/meter
	MUIRexx.guide/text
	MUIRexx.guide/button
	MUIRexx.guide/image
	MUIRexx.guide/switch
	MUIRexx.guide/check
	MUIRexx.guide/cycle
	MUIRexx.guide/radio
	MUIRexx.guide/string
	MUIRexx.guide/popasl
	MUIRexx.guide/slider
	MUIRexx.guide/popslider
	MUIRexx.guide/knob
	MUIRexx.guide/list
	MUIRexx.guide/dirlist
	MUIRexx.guide/volumelist
	MUIRexx.guide/object
	MUIRexx.guide/Misc
	MUIRexx.guide/request
	MUIRexx.guide/method
	MUIRexx.guide/setvar
	MUIRexx.guide/getvar
	MUIRexx.guide/application
	MUIRexx.guide/Example Macro
	MUIRexx.guide/MUI Format Sequences
	MUIRexx.guide/MUI Image Specifications
	MUIRexx.guide/MUI List Format
	MUIRexx.guide/MagicUserInterface
	MUIRexx.guide/Acknowledgements
	MUIRexx.guide/History
	MUIRexx.guide/Concept Index
	MUIRexx.guide/Command Index

